↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
goal1: (b)
s2l2: (b,f)
append3: (b,f,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
goal_1_in_g1(X) -> if_goal_1_in_1_g2(X, s2l_2_in_ga2(X, XS))
s2l_2_in_ga2(s_11(X), ._22(Y, Xs)) -> if_s2l_2_in_1_ga4(X, Y, Xs, s2l_2_in_ga2(X, Xs))
s2l_2_in_ga2(0_0, []_0) -> s2l_2_out_ga2(0_0, []_0)
if_s2l_2_in_1_ga4(X, Y, Xs, s2l_2_out_ga2(X, Xs)) -> s2l_2_out_ga2(s_11(X), ._22(Y, Xs))
if_goal_1_in_1_g2(X, s2l_2_out_ga2(X, XS)) -> if_goal_1_in_2_g3(X, XS, append_3_in_gaa3(XS, YS, ZS))
append_3_in_gaa3([]_0, XS, XS) -> append_3_out_gaa3([]_0, XS, XS)
append_3_in_gaa3(._22(X, XS), YS, ._22(X, ZS)) -> if_append_3_in_1_gaa5(X, XS, YS, ZS, append_3_in_gaa3(XS, YS, ZS))
if_append_3_in_1_gaa5(X, XS, YS, ZS, append_3_out_gaa3(XS, YS, ZS)) -> append_3_out_gaa3(._22(X, XS), YS, ._22(X, ZS))
if_goal_1_in_2_g3(X, XS, append_3_out_gaa3(XS, YS, ZS)) -> goal_1_out_g1(X)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
goal_1_in_g1(X) -> if_goal_1_in_1_g2(X, s2l_2_in_ga2(X, XS))
s2l_2_in_ga2(s_11(X), ._22(Y, Xs)) -> if_s2l_2_in_1_ga4(X, Y, Xs, s2l_2_in_ga2(X, Xs))
s2l_2_in_ga2(0_0, []_0) -> s2l_2_out_ga2(0_0, []_0)
if_s2l_2_in_1_ga4(X, Y, Xs, s2l_2_out_ga2(X, Xs)) -> s2l_2_out_ga2(s_11(X), ._22(Y, Xs))
if_goal_1_in_1_g2(X, s2l_2_out_ga2(X, XS)) -> if_goal_1_in_2_g3(X, XS, append_3_in_gaa3(XS, YS, ZS))
append_3_in_gaa3([]_0, XS, XS) -> append_3_out_gaa3([]_0, XS, XS)
append_3_in_gaa3(._22(X, XS), YS, ._22(X, ZS)) -> if_append_3_in_1_gaa5(X, XS, YS, ZS, append_3_in_gaa3(XS, YS, ZS))
if_append_3_in_1_gaa5(X, XS, YS, ZS, append_3_out_gaa3(XS, YS, ZS)) -> append_3_out_gaa3(._22(X, XS), YS, ._22(X, ZS))
if_goal_1_in_2_g3(X, XS, append_3_out_gaa3(XS, YS, ZS)) -> goal_1_out_g1(X)
GOAL_1_IN_G1(X) -> IF_GOAL_1_IN_1_G2(X, s2l_2_in_ga2(X, XS))
GOAL_1_IN_G1(X) -> S2L_2_IN_GA2(X, XS)
S2L_2_IN_GA2(s_11(X), ._22(Y, Xs)) -> IF_S2L_2_IN_1_GA4(X, Y, Xs, s2l_2_in_ga2(X, Xs))
S2L_2_IN_GA2(s_11(X), ._22(Y, Xs)) -> S2L_2_IN_GA2(X, Xs)
IF_GOAL_1_IN_1_G2(X, s2l_2_out_ga2(X, XS)) -> IF_GOAL_1_IN_2_G3(X, XS, append_3_in_gaa3(XS, YS, ZS))
IF_GOAL_1_IN_1_G2(X, s2l_2_out_ga2(X, XS)) -> APPEND_3_IN_GAA3(XS, YS, ZS)
APPEND_3_IN_GAA3(._22(X, XS), YS, ._22(X, ZS)) -> IF_APPEND_3_IN_1_GAA5(X, XS, YS, ZS, append_3_in_gaa3(XS, YS, ZS))
APPEND_3_IN_GAA3(._22(X, XS), YS, ._22(X, ZS)) -> APPEND_3_IN_GAA3(XS, YS, ZS)
goal_1_in_g1(X) -> if_goal_1_in_1_g2(X, s2l_2_in_ga2(X, XS))
s2l_2_in_ga2(s_11(X), ._22(Y, Xs)) -> if_s2l_2_in_1_ga4(X, Y, Xs, s2l_2_in_ga2(X, Xs))
s2l_2_in_ga2(0_0, []_0) -> s2l_2_out_ga2(0_0, []_0)
if_s2l_2_in_1_ga4(X, Y, Xs, s2l_2_out_ga2(X, Xs)) -> s2l_2_out_ga2(s_11(X), ._22(Y, Xs))
if_goal_1_in_1_g2(X, s2l_2_out_ga2(X, XS)) -> if_goal_1_in_2_g3(X, XS, append_3_in_gaa3(XS, YS, ZS))
append_3_in_gaa3([]_0, XS, XS) -> append_3_out_gaa3([]_0, XS, XS)
append_3_in_gaa3(._22(X, XS), YS, ._22(X, ZS)) -> if_append_3_in_1_gaa5(X, XS, YS, ZS, append_3_in_gaa3(XS, YS, ZS))
if_append_3_in_1_gaa5(X, XS, YS, ZS, append_3_out_gaa3(XS, YS, ZS)) -> append_3_out_gaa3(._22(X, XS), YS, ._22(X, ZS))
if_goal_1_in_2_g3(X, XS, append_3_out_gaa3(XS, YS, ZS)) -> goal_1_out_g1(X)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
GOAL_1_IN_G1(X) -> IF_GOAL_1_IN_1_G2(X, s2l_2_in_ga2(X, XS))
GOAL_1_IN_G1(X) -> S2L_2_IN_GA2(X, XS)
S2L_2_IN_GA2(s_11(X), ._22(Y, Xs)) -> IF_S2L_2_IN_1_GA4(X, Y, Xs, s2l_2_in_ga2(X, Xs))
S2L_2_IN_GA2(s_11(X), ._22(Y, Xs)) -> S2L_2_IN_GA2(X, Xs)
IF_GOAL_1_IN_1_G2(X, s2l_2_out_ga2(X, XS)) -> IF_GOAL_1_IN_2_G3(X, XS, append_3_in_gaa3(XS, YS, ZS))
IF_GOAL_1_IN_1_G2(X, s2l_2_out_ga2(X, XS)) -> APPEND_3_IN_GAA3(XS, YS, ZS)
APPEND_3_IN_GAA3(._22(X, XS), YS, ._22(X, ZS)) -> IF_APPEND_3_IN_1_GAA5(X, XS, YS, ZS, append_3_in_gaa3(XS, YS, ZS))
APPEND_3_IN_GAA3(._22(X, XS), YS, ._22(X, ZS)) -> APPEND_3_IN_GAA3(XS, YS, ZS)
goal_1_in_g1(X) -> if_goal_1_in_1_g2(X, s2l_2_in_ga2(X, XS))
s2l_2_in_ga2(s_11(X), ._22(Y, Xs)) -> if_s2l_2_in_1_ga4(X, Y, Xs, s2l_2_in_ga2(X, Xs))
s2l_2_in_ga2(0_0, []_0) -> s2l_2_out_ga2(0_0, []_0)
if_s2l_2_in_1_ga4(X, Y, Xs, s2l_2_out_ga2(X, Xs)) -> s2l_2_out_ga2(s_11(X), ._22(Y, Xs))
if_goal_1_in_1_g2(X, s2l_2_out_ga2(X, XS)) -> if_goal_1_in_2_g3(X, XS, append_3_in_gaa3(XS, YS, ZS))
append_3_in_gaa3([]_0, XS, XS) -> append_3_out_gaa3([]_0, XS, XS)
append_3_in_gaa3(._22(X, XS), YS, ._22(X, ZS)) -> if_append_3_in_1_gaa5(X, XS, YS, ZS, append_3_in_gaa3(XS, YS, ZS))
if_append_3_in_1_gaa5(X, XS, YS, ZS, append_3_out_gaa3(XS, YS, ZS)) -> append_3_out_gaa3(._22(X, XS), YS, ._22(X, ZS))
if_goal_1_in_2_g3(X, XS, append_3_out_gaa3(XS, YS, ZS)) -> goal_1_out_g1(X)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
APPEND_3_IN_GAA3(._22(X, XS), YS, ._22(X, ZS)) -> APPEND_3_IN_GAA3(XS, YS, ZS)
goal_1_in_g1(X) -> if_goal_1_in_1_g2(X, s2l_2_in_ga2(X, XS))
s2l_2_in_ga2(s_11(X), ._22(Y, Xs)) -> if_s2l_2_in_1_ga4(X, Y, Xs, s2l_2_in_ga2(X, Xs))
s2l_2_in_ga2(0_0, []_0) -> s2l_2_out_ga2(0_0, []_0)
if_s2l_2_in_1_ga4(X, Y, Xs, s2l_2_out_ga2(X, Xs)) -> s2l_2_out_ga2(s_11(X), ._22(Y, Xs))
if_goal_1_in_1_g2(X, s2l_2_out_ga2(X, XS)) -> if_goal_1_in_2_g3(X, XS, append_3_in_gaa3(XS, YS, ZS))
append_3_in_gaa3([]_0, XS, XS) -> append_3_out_gaa3([]_0, XS, XS)
append_3_in_gaa3(._22(X, XS), YS, ._22(X, ZS)) -> if_append_3_in_1_gaa5(X, XS, YS, ZS, append_3_in_gaa3(XS, YS, ZS))
if_append_3_in_1_gaa5(X, XS, YS, ZS, append_3_out_gaa3(XS, YS, ZS)) -> append_3_out_gaa3(._22(X, XS), YS, ._22(X, ZS))
if_goal_1_in_2_g3(X, XS, append_3_out_gaa3(XS, YS, ZS)) -> goal_1_out_g1(X)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
APPEND_3_IN_GAA3(._22(X, XS), YS, ._22(X, ZS)) -> APPEND_3_IN_GAA3(XS, YS, ZS)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
APPEND_3_IN_GAA1(._21(XS)) -> APPEND_3_IN_GAA1(XS)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
S2L_2_IN_GA2(s_11(X), ._22(Y, Xs)) -> S2L_2_IN_GA2(X, Xs)
goal_1_in_g1(X) -> if_goal_1_in_1_g2(X, s2l_2_in_ga2(X, XS))
s2l_2_in_ga2(s_11(X), ._22(Y, Xs)) -> if_s2l_2_in_1_ga4(X, Y, Xs, s2l_2_in_ga2(X, Xs))
s2l_2_in_ga2(0_0, []_0) -> s2l_2_out_ga2(0_0, []_0)
if_s2l_2_in_1_ga4(X, Y, Xs, s2l_2_out_ga2(X, Xs)) -> s2l_2_out_ga2(s_11(X), ._22(Y, Xs))
if_goal_1_in_1_g2(X, s2l_2_out_ga2(X, XS)) -> if_goal_1_in_2_g3(X, XS, append_3_in_gaa3(XS, YS, ZS))
append_3_in_gaa3([]_0, XS, XS) -> append_3_out_gaa3([]_0, XS, XS)
append_3_in_gaa3(._22(X, XS), YS, ._22(X, ZS)) -> if_append_3_in_1_gaa5(X, XS, YS, ZS, append_3_in_gaa3(XS, YS, ZS))
if_append_3_in_1_gaa5(X, XS, YS, ZS, append_3_out_gaa3(XS, YS, ZS)) -> append_3_out_gaa3(._22(X, XS), YS, ._22(X, ZS))
if_goal_1_in_2_g3(X, XS, append_3_out_gaa3(XS, YS, ZS)) -> goal_1_out_g1(X)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
S2L_2_IN_GA2(s_11(X), ._22(Y, Xs)) -> S2L_2_IN_GA2(X, Xs)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
S2L_2_IN_GA1(s_11(X)) -> S2L_2_IN_GA1(X)
From the DPs we obtained the following set of size-change graphs: